home *** CD-ROM | disk | FTP | other *** search
-
-
-
- SSSSGGGGGGGGSSSSVVVVPPPP((((3333FFFF)))) SSSSGGGGGGGGSSSSVVVVPPPP((((3333FFFF))))
-
-
-
- NNNNAAAAMMMMEEEE
- SGGSVP - compute orthogonal matrices U, V and Q such that N-K-L K L
- U'*A*Q = K ( 0 A12 A13 ) if M-K-L >= 0
-
- SSSSYYYYNNNNOOOOPPPPSSSSIIIISSSS
- SUBROUTINE SGGSVP( JOBU, JOBV, JOBQ, M, P, N, A, LDA, B, LDB, TOLA, TOLB,
- K, L, U, LDU, V, LDV, Q, LDQ, IWORK, TAU, WORK, INFO )
-
- CHARACTER JOBQ, JOBU, JOBV
-
- INTEGER INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N, P
-
- REAL TOLA, TOLB
-
- INTEGER IWORK( * )
-
- REAL A( LDA, * ), B( LDB, * ), Q( LDQ, * ), TAU( * ), U(
- LDU, * ), V( LDV, * ), WORK( * )
-
- PPPPUUUURRRRPPPPOOOOSSSSEEEE
- SGGSVP computes orthogonal matrices U, V and Q such that
- L ( 0 0 A23 )
- M-K-L ( 0 0 0 )
-
- N-K-L K L
- = K ( 0 A12 A13 ) if M-K-L < 0;
- M-K ( 0 0 A23 )
-
- N-K-L K L
- V'*B*Q = L ( 0 0 B13 )
- P-L ( 0 0 0 )
-
- where the K-by-K matrix A12 and L-by-L matrix B13 are nonsingular upper
- triangular; A23 is L-by-L upper triangular if M-K-L >= 0, otherwise A23
- is (M-K)-by-L upper trapezoidal. K+L = the effective numerical rank of
- the (M+P)-by-N matrix (A',B')'. Z' denotes the transpose of Z.
-
- This decomposition is the preprocessing step for computing the
- Generalized Singular Value Decomposition (GSVD), see subroutine SGGSVD.
-
-
- AAAARRRRGGGGUUUUMMMMEEEENNNNTTTTSSSS
- JOBU (input) CHARACTER*1
- = 'U': Orthogonal matrix U is computed;
- = 'N': U is not computed.
-
- JOBV (input) CHARACTER*1
- = 'V': Orthogonal matrix V is computed;
- = 'N': V is not computed.
-
-
-
-
-
-
- PPPPaaaaggggeeee 1111
-
-
-
-
-
-
- SSSSGGGGGGGGSSSSVVVVPPPP((((3333FFFF)))) SSSSGGGGGGGGSSSSVVVVPPPP((((3333FFFF))))
-
-
-
- JOBQ (input) CHARACTER*1
- = 'Q': Orthogonal matrix Q is computed;
- = 'N': Q is not computed.
-
- M (input) INTEGER
- The number of rows of the matrix A. M >= 0.
-
- P (input) INTEGER
- The number of rows of the matrix B. P >= 0.
-
- N (input) INTEGER
- The number of columns of the matrices A and B. N >= 0.
-
- A (input/output) REAL array, dimension (LDA,N)
- On entry, the M-by-N matrix A. On exit, A contains the
- triangular (or trapezoidal) matrix described in the Purpose
- section.
-
- LDA (input) INTEGER
- The leading dimension of the array A. LDA >= max(1,M).
-
- B (input/output) REAL array, dimension (LDB,N)
- On entry, the P-by-N matrix B. On exit, B contains the
- triangular matrix described in the Purpose section.
-
- LDB (input) INTEGER
- The leading dimension of the array B. LDB >= max(1,P).
-
- TOLA (input) REAL
- TOLB (input) REAL TOLA and TOLB are the thresholds to
- determine the effective numerical rank of matrix B and a subblock
- of A. Generally, they are set to TOLA = MAX(M,N)*norm(A)*MACHEPS,
- TOLB = MAX(P,N)*norm(B)*MACHEPS. The size of TOLA and TOLB may
- affect the size of backward errors of the decomposition.
-
- K (output) INTEGER
- L (output) INTEGER On exit, K and L specify the dimension
- of the subblocks described in Purpose. K + L = effective
- numerical rank of (A',B')'.
-
- U (output) REAL array, dimension (LDU,M)
- If JOBU = 'U', U contains the orthogonal matrix U. If JOBU =
- 'N', U is not referenced.
-
- LDU (input) INTEGER
- The leading dimension of the array U. LDU >= max(1,M) if JOBU =
- 'U'; LDU >= 1 otherwise.
-
- V (output) REAL array, dimension (LDV,M)
- If JOBV = 'V', V contains the orthogonal matrix V. If JOBV =
- 'N', V is not referenced.
-
-
-
-
- PPPPaaaaggggeeee 2222
-
-
-
-
-
-
- SSSSGGGGGGGGSSSSVVVVPPPP((((3333FFFF)))) SSSSGGGGGGGGSSSSVVVVPPPP((((3333FFFF))))
-
-
-
- LDV (input) INTEGER
- The leading dimension of the array V. LDV >= max(1,P) if JOBV =
- 'V'; LDV >= 1 otherwise.
-
- Q (output) REAL array, dimension (LDQ,N)
- If JOBQ = 'Q', Q contains the orthogonal matrix Q. If JOBQ =
- 'N', Q is not referenced.
-
- LDQ (input) INTEGER
- The leading dimension of the array Q. LDQ >= max(1,N) if JOBQ =
- 'Q'; LDQ >= 1 otherwise.
-
- IWORK (workspace) INTEGER array, dimension (N)
-
- TAU (workspace) REAL array, dimension (N)
-
- WORK (workspace) REAL array, dimension (max(3*N,M,P))
-
- INFO (output) INTEGER
- = 0: successful exit
- < 0: if INFO = -i, the i-th argument had an illegal value.
-
- FFFFUUUURRRRTTTTHHHHEEEERRRR DDDDEEEETTTTAAAAIIIILLLLSSSS
- The subroutine uses LAPACK subroutine SGEQPF for the QR factorization
- with column pivoting to detect the effective numerical rank of the a
- matrix. It may be replaced by a better rank determination strategy.
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- PPPPaaaaggggeeee 3333
-
-
-
-